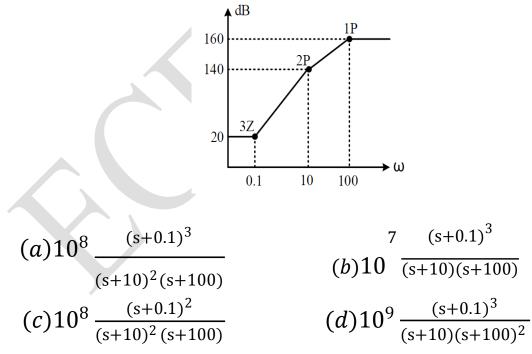
1. In the Bode – plot of a unity feedback control system, the value of phase of $(j\omega)$ at the gain cross over frequency is – 125° . The phase margin of the system is


(a) -125° (b) -55° (c) 55° (d) 125°

[GATE 1998: 1 Mark]

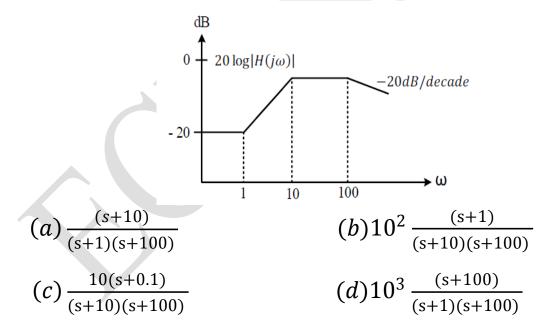
Soln. The Phase angle of $(j\omega)$ at $= \omega_{gc} = -125^{0}$ ω_{gc} is gain cross over frequency, $\phi_{gc} = \angle (j\omega_{gc}) = -125^{0}$ The phase margin $\gamma = 180 + \phi_{gc}$ = 180 - 125 $= 55^{0}$

Option (c)

2. The approximate Bode magnitude plot of a minimum – phase system is shown in the figure. The transfer function of the system is

[GATE 2003: 2 Marks]

Soln. Gain changes by (140 - 20) dB when ω changes from 0.1 to 1 and 1 to 10 i.e. 2 decades slope is 60dB/decade


 $\omega = 0.1$ change in slope = +60dB/decade 3 real zero

 ω = 10 change in slope is from +60dB/decade to 20dB/decade i.e. - 40dB/decade 2 real poles

 $\omega = 100$ change is slope is from 20dB/decade to 0 dB i.e. - 20dB/decade 1 finite pole

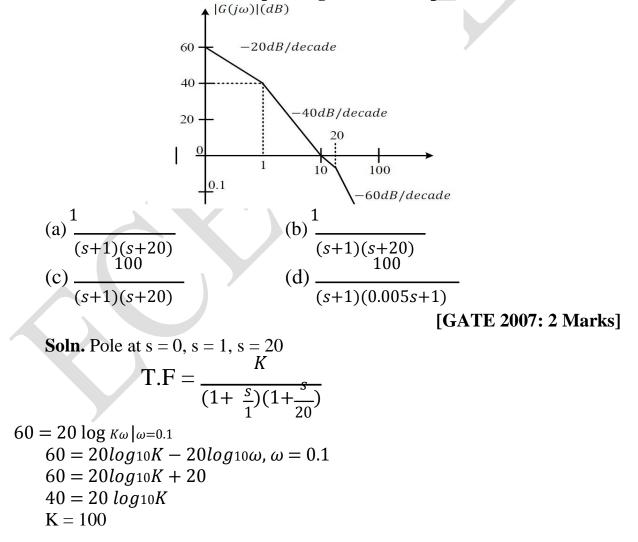
$$T.F = \frac{(1+\frac{s}{0.1})^3}{(1+\frac{s}{10})^2(1+\frac{s}{100})}$$

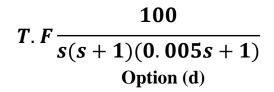
Magnitude is 20dB at $\omega = 0.1$
 $20\log K = 20|\omega = 0.1$
 $K = 10$
 $T.F = \frac{10(1+\frac{3}{0.1})^3}{(1+\frac{s}{10})^2(1+\frac{s}{100})}$
 $= 10^8 \frac{(s+0.1)^3}{(s+10)^2(s+100)}$
Option (c)

3. Consider the Bode magnitude plot shown in the figure. The transfer function H(s) is

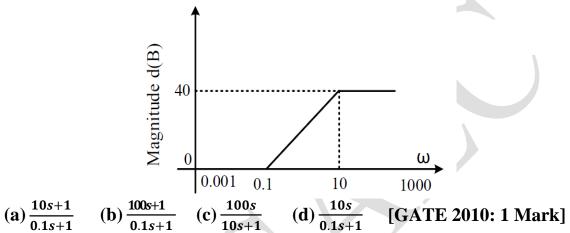
Soln. At $\omega = 1$ change in slope 20 dB/decade Zero at $\omega = 1$ $\omega = 10$, change in slope 20dB to 0dB i.e. -20dB/decade pole at $\omega = 10$ $\omega = 100$ change in slope -20dB/decade pole at $\omega = 100$ Transfer function

$$H(S) = \frac{K(s+1)}{(\frac{s}{10}+1)(\frac{s}{100}+1)}$$


 $20 \log K = -20$


$$K = (10)^{-1} = 0.1$$

$$H(S) = \frac{0.1(s+1)}{(\frac{s}{10}+1)(\frac{s}{100}+1)}$$


$$H(S) = \frac{10^{2}(s+1)}{(s+10)(s+100)}$$

Option (b)

4. The asymptotic Bode plot of a transfer function is as shown in the figure. The transfer function G(s) corresponding to this Bode plot is

5. For the asymptotic Bode magnitude plot shown below, the system transfer function can be

Soln. Slope of asymptote changes from 0 to 40 dB in 2 decades (0.1 to 1, 1 to 10) or slope is 20dB/decade

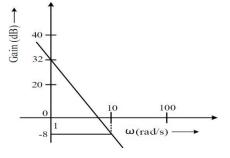
Zero at $\omega = 0.1$

 $\omega = 10$, slope changes from 20dB to 0dB i.e. (-20dB/decade)

Pole at
$$\omega = 10$$

$$K(1 + \frac{s}{0.1})$$

$$T.F = \frac{0.1}{(1 + \frac{s}{10})}$$

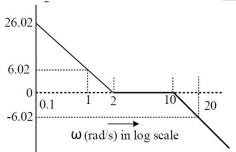

$$0dB|_{\omega=0.001} = 20log_{10}K$$

$$K = 1$$

$$T.F = \frac{10s + 1}{0.1s + 1}$$
Option

Option (a)

6. The Bode plot of a transfer function G(s) is shown in the figure below:


(a)
$$\frac{39.8}{s}$$
 (b) $\frac{39.8}{s^2}$ (c) $\frac{32}{s}$ (d) $\frac{32}{s^2}$

[GATE 2013: 1 Mark]

Soln. Slope = -40dB/decade 2 poles at $\omega = 0$ 20 log $K - 40log_{10 \ 10} = -8$ 20 log 10 $\kappa = 32$ $K = 10_{3220} /= 39.8$ $T. F = \frac{39.8}{s^2}$

Option (d)

7. The Bode asymptotic magnitude plot of a minimum phase system is shown in this figure.

If the system is connected in a unity negative feedback configuration, the steady state error of the closed loop system, to a unit ramp input, is_____.

[GATE 2014: 2 Marks]

Soln. Pole at s = 0, s = 10Zero at s = 2The open loop transfer function of the system $(s)H(s) = \frac{(\frac{s}{2}+1)}{(\frac{s}{10}+1)}$ $26.02|_{\omega=0.1} = 20log_{10}K - 20log_{10}\omega$ $26.02 = 20log_{10}K - 20log_{10}10 - 1$ $= 20log_{10}K + 20$ $6.02 = 20log_{10}K$ $K = 1.99 \cong 2$ $(s)H(s) = \frac{2*10(S+2)}{2(S+10)}$ $G(s)H(s) = \frac{-10(S+2)}{s(S+10)}$

Steady state error for ramp input is $e_{ss} = \frac{1}{K_a}$ where $K_a = \lim_{S \to S} S(S)H(S)$ $e_{ss} = \frac{1}{2} = 0.5$

8. In a Bode magnitude plot, which one of the following slopes would be exhibited at high frequency by 4th order all-pole system?

(a) - 80 dB/decade(b) - 40 dB/decade(c) + 40 dB/decade(d) + 80 dB/decade[GATE: 2014 1 Mark]Soln. 4th order all-pole system means that the system must be having no zero or s-term in the numerator and S4 term in denominator.

$(s) \propto \frac{1}{s^4}$

One pole exhibits slope of (-20dB/decade), so four pole exhibits slope of -80dB/decade

Option (a)